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Abstract

Spaces of sequences of bounded linear splines defined on arbitrary subsets of R are studied,
especially with respect to continuous extensions. An extension problem is solved by
establishing a decomposition for the space of spline sequences with respect to the /*-space
on a corresponding subset of Z, x Z. An application to Zygmund spaces on subsets is
presented.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

We discuss some Banach spaces of sequences of bounded linear spline functions
on subsets, F, of R. We are especially interested in solving the problem of
constructing continuous extension operators on these spaces and we present a
solution to this problem. This solution is founded on the construction of linear and
bounded bijections between three spaces, denoted by 7 (F), &(F) and [* (D(F)).
The 7 (F)-spaces are closely related to the Zygmund spaces on subsets and the
[ (D(F))-spaces are restrictions of the /™ (Z, x Z)-space to certain subsets.

The successful outcome with our method of solution depends on the bijections
which transfer the difficult extension problem for J (F) to a trivial one for
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[ (D(F)). We give an application of the above result, in doing so we introduce a new
continuous extension operator for the Zygmund spaces on subsets of R.

Our general idea when studying function spaces is to avoid definitions and
constructions which contain uncountability. Instead, we use definitions which are
based on countability and finiteness. The reasoning for this approach being that
further applications can be devised with our results.

Many mathematicians have paved the way for, and contributed to, the solutions
of the extension problems for the Zygmund space on subsets. Those who did the final
work are Brudnyi and Shvartsman [Shv84], [Shv87] on one hand and Jonsson and
Wallin on the other [JW79] [Jon85]. Their solutions are basically built on Whitney’s
extension operator and are modifications of it. Whitney’s extension procedure is
composed of several parts, one of which is to characterize the functions which one
would like to extend by discontinuous functions. The latter are piecewise
polynomials and the characterization is made on uncountably many intervals. We
suggest that one should avoid uncountability and discontinuity by using a
characterization by a sequence of smooth splines. We follow through on this idea
by examining in detail the case of the Zygmund space in dimension one, and show
that this case is an application of our theory for the three spaces 7 (F), &(F) and
[*(D(F)) and the connections between them.

The present work was preconceived in [Win0O1], and our result is a generalization
of the main result there. In that work, we presented a decomposition for the
Zygmund space on R. The decomposition we now present is more general since it is
valid for subsets F of R. The generalization is possible thanks to a more general and
improved proof.

There are a huge number of results and papers on extensions of Zygmund-, Besov-
and related function spaces. As a general background for the present work we
recommend works by Zygmund [Zyg89], Whitney [Whi34a] [Whi34b], Besov-Ilin-
Nikolski [BIN79], Jonsson—Wallin [JW84], Brudyi—Shvartsmann [BS97], and
references there. As special background, we refer to [WinO1].

2. Notation, definitions and theorems

The disposition of this paragraph is as follows. We introduce our notation, define
three spaces 7 (F), ¥ (F) and [ (D(F)), establish one-to-one mappings between the
three spaces, extend the [/ (D(F))-space to the /*(Z, x Z)-space, and then apply
the inverses and map back to 7 (R). That gives us an extension of 7 (F) to 7 (R).
Finally we apply the result to the Zygmund spaces A(1, F).

The following notation will be used throughout this paper:

Ky=Zand K, =2"7(Z+1/2), p=1,2,... .

J(Ko)={J:J=[i,i+1], ieZ}.

I(Ky) ={J:J=2"Pi—1/2,i+1/2], ieZ}, p=1,2,... .

F is a closed subset of R.

F(9), where 6 >0, is the closed J-neighbourhood of F.
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F,=u{J:JeJ(K,) and J2'P)nF#0}, p=0,1,2,... .
B(x) = dist(x,(—0,0)U (2, 0)).
Following the above notation we have that

FQ2'"?)oF,, ,oF(27), p=-1,0,1,...
and hence

F,oF, 1,o---2F, p=0,1,2,.... (1)
With respect to a given F we now define three function spaces #(F), 7 (F) and
S (F) where U(F)> T (F)o S (F).

Definition 1. Let %(F) be the space of all sequences of linear splines {u,(x)} 2,
where uy(x) has domain F; and is identically zero, u,(x) have domain F,, knot points
at F,nK,, p=1,2,... and

sup  sup |(u,)(x)|< + 0. 2
p=12,..., xe¢F,

Definition 2. Let 7 (F)<=%(F) be the space of all sequences {7,(x)},Z, such that

sup sup  27|(tp41 — 1) (X)| < + 0. (3)
p=0,12,..., x&Fp

Definition 3. Let .'(F) =% (F) be the space of all sequences {s,(x)},Z, such that

sup  sup 27|(sp1)(x)| < + 0. (4)
p=0,12,..., xeF,y

Since it is obvious that ¥ (F)<=.7 (F) and straightforward to prove the following
theorem the proof is left out.

Theorem 1. The spaces U(F), T (F) and & (F) are Banach spaces with norms || -
wry |17 and |||l ypy given by the left-hand sides of (2), (3) and (4),
respectively.

We make the following useful definition of an operator g, on the space of real
valued functions on F, into the space of linear splines on F),.

Definition 4. For a real-valued function f(x),x¢ F,, let o,[f] be the linear spline
which interpolates / and has knot points at K,nF,, n=1,2, ... .

When there is no ambiguity, we refrain from writing the independent variable x in
the function. For instance, we write {7,},~, instead of {7,(x)},Z,.
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Lemma 1. Let F be closed and © = {1,(x)},~, be in T (F). Then

tp — op[tp-1ll <2_<P_l)||TH.7(F) (5)
and

17 = o) [5p-1)1<27 212l - (6)
Proof. To prove (5) use Definition 2 and the three facts that 7, = g,[t,], 0, is linear
and o,[f] =f on K,. Then it follows that

[t — p[Tp-1]] (7)

= |op[ty — 1p1]I< sup o[ty — 7p-1]| (8)
K, Fp

= sup |1, —1,4]<27" V|]z
Kmep

T(F): 9)

To prove (6), we just use the triangle inequality and Definition 2. Then

[ = ap][rp—1]]
= [tp-1 = op[tp1]l = |1p—1 — T + Tp — Gp[Tp-1]|
<[tp-1 = 1l + lop[tp — Tp-1l| <4 X 27t 7y (10)

and the two inequalities are proved. [

Lemma 2. Let 1(x) be a bounded linear spline with knot points in Ky UK, U --- UK,
and zeroes in K,_;. Then

sup |o,[7](x)|<3 sup [¢(x)|. (11)
xeR xeR

We omit the proof since the inequality is obvious.
The following lemma and its proof are used in two of the theorems below.

Lemma 3. Lets = {s,(x)} ¢ S (F) and J ¢ #(K,) such that J ¢ 7 (K,). Then there is
a nonnegative integer m<p so that

1 = opllso + 51+ -+ +5p](0) = [ = 0p)lsm] ()| <2 [Isll gy, xed (12)

Proof. From the construction of the knot point sets, it follows that the intervals in
J(K,) cover R, have disjoint interior, and that each such interval contain exactly one
point from Kyu K;u --- UK, and this point is in the center of the interval. Since
for a given /<p the linear spline s; has knot points exclusively in Kj, it follows that
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for the given interval Je.#(K,) there is at most one /<p, say / = m, so that s,, has a
knot point in J. All others, 5,51, ..., Su—1,Sm+1, ..., Sp—1 are linear in J and hence

I —opllsi](x) =0, xel, I=0,1,....om—1,m+1,....p—1 (13)

Thus the equality in (12) is proved. Now consider the inequality in (12).
From {s,},2) ¢ (F) and Theorem 1 we get that s,, is Lipschitz with constant
2||sl| (s and hence

1Agr5l <21ll] (277 (14)

In the estimation of |[I — 0,][s.](x)| below we use z for 2!7(i +1). Then it follows
from the Lipschitz property that

[ = apllsml(x)],

= 2171)”5”;”/(1?) (15)

and this completes the proof of the lemma. [

We now introduce a linear transformation ® : 7 (F)— % (F) which maps 1 =
{ri}o" in T (F) tos={s;}, in ¥ (F) according to

Sy =T, —0OplS0+S1+ - +58-1], p=0,1,2... . (16)

For this transformation we have the following important theorem.

Theorem 2. The linear transformation ® is bijective and ® and its inverse ®' are
bounded in the following sense.

NO({7i} o)) <A} 2ol () (17)
and
107" ({53 Z) ||y <3II{8:} 2ol ry- (18)

Proof. From the simple construction, given by (16), of the sequence {s;}.°, by the
sequence {7;}-, it is easy to see that @ is linear on % (F), 1-1, and that the inverse is
defined and linear on % (F'). The proof will be complete when we prove (17) and (18).
We prove (17) by estimating |s,|, ne Z,. From (16) follows

Sy S+ s
=s1+s+ - +si+u—oifsi 2+ o +5im1]
Z‘Ei—‘r[l—oi][é‘l—|—S2+~~—|—S,’_1], i=1,2,.... (19)
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This is a recursion formula. The first step to take to estimate s, is to express it by (16)
and then rewrite it by the recursion formula. We then get

Sp =Tn — O',,[S] 4852+ - +Sn—]]
=T, — Op[Tuet + [ — Gpi][s1 + 52+ -+ + Su2]]
=1, — op[tu1 + [ — ont][tn2 + [I — 0p2]s1 + 52 + -+ + sp-3]]]- (20)

We would like to estimate [I — 6,_2][s1 + 52 + -+ + s,—3] in Eq. (20). This is done by
proving that

[ —aillso+ 1+ 2+ - +si]|<3- 27 V||«

7(F) (21)

is true for i¢ Z, by induction:
The inequality is true for i = 1 since 5o = 0.
For i = 2 the left-hand side of (21) is

I = aaffsill = [[I = a2][n]]. (22)

Then by Lemma 1 inequality (21) is true for i = 2.

We now prove that (21) holds for i = m assuming that it holds for i<m — 1. We
first consider the expression s;+8;+ -+ +5,_2 Wwith knot points in
KiuKyu - UK, and thereafter [I — ,,—1][s1 + 52+ -+ + s;u—2] with knot points
in KiukKr,u - UK, 2 UK,,_1. We observe that the latter expression is 0 in K,,,_; and
that the set K,,_; coincides with the set of midpoints of those intervals which are
bounded by pairs of consecutive points from Kyu Kj UKy - UK, 5. If we then
use the fact that every linear spline is uniquely determined by its sequence of
functions values in the knot points then we have, from the induction assumption,
that the sequence of function values at the knot points may be written

...,a,0,b,0,¢,0, ... (23)

and that they are bounded by the right-hand side of (21) for i=m — 1. We now
apply the operator [I —o,,] to [[ —opm_1](s1 + 52+ - + sm—2). After some con-
siderations we see that this creates a new series which is

Zo—;<a;b)o§o . (24)
We then add (compare (20))

[l = om][tm] (25)
to

L — o]l — 0pmai][so+ 51+ -+ + Sm—2]. (26)

Expression (25) corresponds to a sequence

"'7“70)0)ﬂ70707’y70707"'7 (27)
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where ...a, 5,7... appear where sequence (24) has values of type —%(&2}’) and they are
bounded according to Lemma 1, that is by 27" - 4 - [[|| . Hence we get

I —om)ltma1] = I — o]l — 6m-1][s0o + s1 + -+ + Spm_2] (28)
and the corresponding sequence
a lla+b b
...,5,0,—§< 3 )+0€,0,§,0,... . (29)

From Lemma 1 in [Win01] and from the induction assumption above it then follows
that sequence (29) is bounded by 3 - 2‘(""1)||r||/j~(F). By induction it now follows that

(21) is true for all natural numbers, in particular for i = n — 1. To conclude the proof
of (17), we estimate, via estimations of the right-hand side of (20); that is, by
estimating

(ty — oultu=1]) — (ou[l — 04-1]-..). (30)
By Lemma 1, the first term is bounded as
T(F) (31)

and by Lemma 2 and (21), the second term is bounded as

[t — Gultui]| <2 Vfe

1 e
lonll = 0n1] <532 2| 17]| 7 ). (32)

Hence (17) is true.
We now prove (18). That is, given s = {s;},2, with norm |[[s| ), we prove that

= {1}, =0 ' ({s;}7,) satisfies
{7} Zoll 7 (r) <28l (33)

Definition 2 leads us to estimate 27|[t,;1 — 7,](x)| < + 0.
Then

2| (tp1 — 1) ()]
=2|sps1 + Oprilso + 51+ - + 5]
— (8p + pls0+ 514 - +5p-1])]
=2sp1 — (I — 6pi1][sp) + [0p51 — Gplls0 + 51+ + 5p_1]]- (34)

We now estimate the three terms between the absolute value signs. We first get by
the Definition 2 that

Zlspri ()< Isll g () - (35)

Then we study [/ —o,.1][s,] on each .#(K,) interval and observe that on every
second such interval [/ — ,41](s,) = 0, and on every other interval [I — g,,1](sy) is a
hat function having zeroes at the end points and extreme values at the center. The
absolute value of the extreme value is then bounded by 277||s][ g f).
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We now consider the third term 27|[g,+1 — 6,][so + 51 + --- + 5,-1]|. Due to the
distribution of knot points, we have that the .#(K,) intervals 2! 7k — (3),k + (3)],
k ¢ Z cover the real line and that an arbitrary such interval, say /, contains at most
one knot point which belongs to one of s¢,s1, ...,5,—1, say s;, [<p — 1. For all other
indices k, k#1, we have [0, — 0,][s;]] = 0. Then we just have to estimate |[o), —
op)[s1]| on I. This function is zero at the endpoints of 7, it is increasing on the first
fourth of /. Thereafter it is nonincreasing and its increasing rate is at most 2 - [|s|| g,

Since 7 has length 2!=7 we get the following bound on 1.

[op+1 — ap][si]] <% 22 ||5||y(F) = 2_p||S||f/’(F)' (36)
Summing up gives

2[tp1 — Tl [l <3||S||y(F)- (37)

Then (18) is proved and therewith the proof of the Theorem is complete. [

For F we define a subset D(F) of Z, x Z and a corresponding /*-space which we
denote /*(D(F)). We prove that ¥ (F) and [*(D(F)) are isometric. The
transformation which establishes the isometry is denoted ¥. We now perform the
above in detail.

We recall that for each positive integer p, the knot points in K, are created by the
formula 2'"7(i +3), ieZ. We introduce the notations int(F,) and D(F) for the
corresponding integers, i.e.

1
int(F,) = {i 2 (i + 5) ¢F, pr}

U {(p,i): ieint(Fp,)},

and

respectively. For each sequence s = {s,(x)},Z, in & (F) there is a unique sequence

( ) = {{C(p }1smt Fp)}ﬁl (38)
where
()= > 2" B2 x —i). (39)
igint(Fp)

Hence W is a linear transformation from %(F) to [ (D(F)). Since for a given
positive integer p, {B(2!77x — i)} _ is a basis for the space of linear splines with
knot points at K, we have that ¥ is a 1 — 1 linear transformation on & (F) onto
[ (D(F)). Since

||{{C(p }131;1? (Fp) }p l||f = .Sup

(p.i) ¢ D(F)
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and

sup eyl = sup  sup 2spi1(x)| = [Isl]gp)
(p,i) e D(F) p=12,..., xeF,

then ¥ is an isometry. Thus we have the following theorem.
Theorem 3. The linear transformation
Y : 9 (F)—I1"(D(F))
is an isometry.
Now define an extension operator on the /* (D(F))-spaces.
Definition 5. Let
E: I (D(F))~ 1" (2 u{0}) x Z)
where
E({{C(p.i)}isint(F,,)};C:I) = {{eu},i)}isim(w,,)};io
and

{c,,ﬂ- if ieint(F,),
Cpi = .
P 0 if ieZ\int(F),).

It is obvious that E is linear and that its norm is 1.

Theorem 4. The transformation
E:17(D(F)) =17 (2 v{0}) x Z)

is a linear extension operator and its norm ||E|| = 1.

We may now combine earlier results to get the following theorem.

189

Theorem 5. The transformations ®,¥, and E and their inverses may be composed to an

extension operator
&=0"W EWo0

on 7 (F) to 7 (R). The extension is linear, bounded and ||&|| < 12.

(41)

Proof. It follows from the definitions of ®, ¥, E, and the inverses ® ' and ¥~! that
they are composable. Since they are linear and bounded, the composition is linear
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and bounded. From the bounds of the norms given in Theorems 2 and 4 it follows

1€(z)

TR = |~ W o EoW o (1)) |
< [l I HINENII@2l] 7 g < 12]]7

7 (F)- (42)

Thus the theorem is proved. [
We now give an application. We begin by introducing an equivalence relation.

Definition 6. The sequences 7; and 1, in 7 (F) are equivalent if they have the same
limit. Hence for each limit there is an equivalance class and the set of equivalance
classes is denoted by 7 (F)'. The space of the limit functions is denoted by Zyg(F).

We define a norm on Zyg(F) by
A1 = inf{[|e]| 7(p) : T = {1} 2o and lim¢; = f}. (43)

The existence of the bounded extension operator in Theorem 5 induces in a
natural way one for Zyg(F) to Zyg(R). Now we are ready to state the relation
between A(1, F) and Zyg(F).

Theorem 6. A(1,R) = Zyg(R). The spaces have equivalent norms.

Proof. Assume first that f(x) e A(1, R). Then from the definition of A(1,R) (see for
instance [Win01]) we know that

FACHIESIVAIINE:S (44)
and
A F <z - B (45)

for xeR he(0, 1]. Then let t = {7;(x)} 2, be given by to(x) = 0 and 1,,(x) = 0,,[ f](x),
xeR, n=1,2,.... Tt follows that t converge to f. Notice that |o,,1[f] — o.[f]| is a
linear spline and hence has its maximum values at the knot points in K, and K,,, . It
follows that we just have to estimate the values at one arbitrary knot point in K,, and
one in K. Let ¢ be an arbitrary knot point at K,,. Then

aulf1(q) = /() (40)

and o,[f] is linear in the .#(K, )-interval where q is center point. Hence
an+1[f](q) is the arithmetic mean of f(x) at the end points of that interval. We have
then for & = 2-("*1) that

lon1[f1(q) — aul/1(9)| < sup SIALS ()]

<3 27(n+1)||f||A(l,R) =5 27" Maqm): (47)
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By the same type of argument, using two steps at an arbitrary knot point r in K,
we get

(0w [£10r) = aul A 1)< 27"V Sl amy +5- 27" flag gy

=3 27" laqm): (48)
Hence
|01 [f1(x) = aal II<27"1 /a1,y (49)
and
1| zygm) <3N Alaq ) - (50)

We now proceed to the estimation which constitutes the second half of the proof.
Assume that g(x) ¢ Zyg(R) with norm [|g||;,,)- Hence for >0 there is a sequence

= {1} ¢ 7 (R), with lim;_, o, 7;(x) = g(x), such that

7l 7wy <9l zyg(w) + &- (51)
Then

2"tnr = Tl <19l zyg(m) + - (52)
This gives

2"tn — gl <2(/9ll zyg(m) + ) (53)
and forn =0

l9(<2(1l9gll 2y () +2)- (54)
Now, let xe¢R and /¢ (0 ,g]. Then there is an integer n>3 such that

27" <2h<2 (55)

and the interval Iy = [x,x + 24] is a subset of an .#(K,,_;)- or an .#(K,_»)-interval.
Hence

Ajti(x) =0 fori=n—1ori=n—2. (56)
Estimating in the less advantageous case (i = n — 2) and using (53) and (54), we get

39| =1A319(x) = ta2(¥)]| = 2 - BAGIG (x) = Tu2 ()]

<227 D2(|lgl| 23y m) + ) <3219 3y + ) (57)
The estimation in the almost trivial case h>§ is done by means of (54),
A9l =2 138591 <2 4 - (9]l ym) + ) SO4(119]| 23 m) + 2)- (58)
Hence g(x)eA(l,R) and
g a1 r) <6419l 2y9(m) + ©)- (59)

By that the proof is complete. O

We have the following decomposition and reconstruction of f & Zyg(F).
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Theorem 7. Let fsZyg(F) and ¢>0. Then there is a sequence {c,; : (p,i)eD(F)} so
that

S = > 2" B2 x—i) (60)
(p.)eD(F))
and
[{epi = (P, D)eDE)H e oy AU N zygry + € (61)

Proof. Let f ¢ Zyg(F) and ¢>0. Then by Definition 6 for ¢>0 there is a sequence
©={1,},29 &7 (F) such that

lim 7,(x) =f(x), x&F. (62)
p= oo

and
el 7oy < U1 zyg(r) + ©)- (63)

Let s = @(t). From Lemma 3 and Theorem 2 follow that
[s1+s24 -+ 851 —op(s1 524 - + 51

<27l gy <8 - 27 lel ) (64)
and by (16) we get
51524 - 51 8 — 5l <827 |[ell (65)
and
o0
S =Y 50, xeF. (66)

p=1
Now, for each s,(x) there is a unique decomposition (compare (38) and (39)) and
hence

fx)= Y 2B x—i). (67)

(p.i) e D(F))

Thus (60) is true and
{¢pi: (p,i)e D(F)} = W®(1), (68)

where ||®||<1 and ||¥||<4. Thus (61) is true and the proof is complete. [
Theorem 8. A(1,F) = Zyg(F) and the spaces have equivalent norms.

Proof. From Theorem 6 we have that A(1, R) = Zyg(R). If we restrict to F and use
the well known trace result A(1, F) = A(1, R)| (see, e.g. [JW84]) it remains to prove
that Zyg(F) = Zyg(R)|p.

It is obvious from Definition 6 that

S el zygry S TSN zyg () - (69)
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Assume now that f ¢ Zyg(F). Then given ¢>0 there is, by the definition of Zyg(F)
and its norm, a sequence t¢.7 (F) such that

el ry <L+ O S 2ygr)- (70)
By Theorem 5 we have
1E @l 7 ry < 12MItl| 75y S 120 + OIS N 2yg(r)- (71)

Since &(t) is the extension of ¢ .7 (F) to 7 (R) and since f by Theorem 7 and its
proof is equal to the limit of the convergent sequence 7 then the natural choice for
the extension e(f) of f to Zyg(R) is the limit of the convergent sequence &(t). Hence
it follows that e(f)|r is the identity mapping on Zyg(F) and the proof is
complete. [
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